Myostatin promotes tenogenic differentiation of C2C12 myoblast cells through Smad3

نویسندگان

  • Kazutaka Uemura
  • Masanori Hayashi
  • Toshiro Itsubo
  • Ayumu Oishi
  • Hiroko Iwakawa
  • Masatoshi Komatsu
  • Shigeharu Uchiyama
  • Hiroyuki Kato
چکیده

Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is expressed in developing and adult skeletal muscle and negatively regulates skeletal muscle growth. Recently, myostatin has been found to be expressed in tendons and increases tendon fibroblast proliferation and the expression of tenocyte markers. C2C12 is a mouse myoblast cell line, which has the ability to transdifferentiate into osteoblast and adipocyte lineages. We hypothesized that myostatin is capable of inducing tenogenic differentiation of C2C12 cells. We found that the expression of scleraxis, a tendon progenitor cell marker, is much higher in C2C12 than in the multipotent mouse mesenchymal fibroblast cell line C3H10T1/2. In comparison with other growth factors, myostatin significantly up-regulated the expression of the tenogenic marker in C2C12 cells under serum-free culture conditions. Immunohistochemistry showed that myostatin inhibited myotube formation and promoted the formation of spindle-shaped cells expressing tenomodulin. We examined signaling pathways essential for tenogenic differentiation to clarify the mechanism of myostatin-induced differentiation of C2C12 into tenocytes. The expression of tenomodulin was significantly suppressed by treatment with the ALK inhibitor SB341542, in contrast to p38MAPK (SB203580) and MEK1 (PD98059) inhibitors. RNAi silencing of Smad3 significantly suppressed myostatin-induced tenomodulin expression. These results indicate that myostatin has a potential role in the induction of tenogenic differentiation of C2C12 cells, which have tendon progenitor cell characteristics, through activation of Smad3-mediated signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor

BACKGROUND GASP-2 is a secreted multi-domain glycoprotein known as a specific inhibitor of myostatin and GDF-11. Here we investigate the role of GASP-2 on myogenesis and the effect of its glycosylation on its activity. METHODS GASP-2 overexpression or knockdown by shRNAs were carried out on C2C12 myoblasts cells. In silico analysis of GASP-2 protein was performed to identify its glycosylation...

متن کامل

Salidroside Inhibits Myogenesis by Modulating p-Smad3-Induced Myf5 Transcription

Aim: Salidroside is an active compound extracted from Rhodiola rosea which is used to alleviate fatigue and enhance endurance in high altitude regions. Some studies have demonstrated that salidroside can affect precursor cell differentiation in hematopoietic stem cells, erythrocytes, and osteoblasts. The aim of this study was to investigate the effect of salidroside on myoblast differentiation ...

متن کامل

Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis.

Expression of Wnt proteins is known to be important for developmental processes such as embryonic pattern formation and determination of cell fate. Previous studies have shown that Wn4 was involved in the myogenic fate of somites, in the myogenic proliferation, and differentiation of skeletal muscle. However, the function of this factor in adult muscle homeostasis remains not well understood. H...

متن کامل

Human myostatin negatively regulates human myoblast growth and differentiation.

Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human m...

متن کامل

Identification of Retinoic Acid in a High Content Screen for Agents that Overcome the Anti-Myogenic Effect of TGF-Beta-1

BACKGROUND Transforming growth factor beta 1 (TGF-β1) is an inhibitor of muscle cell differentiation that is associated with fibrosis, poor regeneration and poor function in some diseases of muscle. When neutralizing antibodies to TGF-β1 or the angiotensin II inhibitor losartan were used to reduce TGF-β1 signaling, muscle morphology and function were restored in mouse models of Marfan Syndrome ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017